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ON SOLVABILITY FOR EVOLUTIONARY
VARIATIONAL INEQUALITY WITH SET-VALUED
GENERALIZED PSEUDOMONOTONE OPERATORS
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ABSTRACT. The sufficient conditions for weak and strong generalized solvability of evo-
lutionary variational inequalities with set-valued operators are proposed. We consider
the operators of pseudomonotone type. We apply this theory to the study of variational
inequalities which are perturbed by convex functionals.

The variational inequalities play an important role in the investigation of many sys-
tems in mechanics, physics, economics etc. in the case of one-side restrictions. For a
single-valued operator the solvability of evolutionary variational inequalities was consid-
ered in [1]. In [2] these results were generalized to a wider class of operators. We obtain
the sufficient conditions for weak and strong generalized solvability of evolutionary vari-
ational inequalities with set-valued operators. Two classes of operators are considered:
the generalized pseudomonotone operator and the operators of (X, W) -semibounded
variation. Such operators arise in control systems with indeterminacy or insufficient
smoothness, see [3].

Let V be a reflexive Banach space, V* its dual space with respect to some Hilbert
space H, T € (0,+00), p € [2,00). Then X = L,(0,T;V) is reflexive Banach too,
X* is dual for X, Ly(0,T;H), {,-) : X x X* = R is the duality, Conv(X*) is
the totality of convex closed sets from X*. Denote by A : X — Conv(X*) a closed-
convex-set-valued operator with Dom(A) = X . The upper and lower support functions
and upper norm on Conv(X*) are defined by the formulae

[A(y): £]+ = d:gl(:)y)(d, g)a [A(y)’ﬁ]— = deiﬁfy)<d’ E}a

and upper norm on Conv(X*) is defined by ||A(y)|l+ = sup ||d||x-.
' deA(y)

Taking into account that the support functions define an operator to within a convex
closure of values (see Lemma 1 [4]), this theory holds for any set-valued operator.

Let us define the reflexive Banach space W with the graph norm of the operator 0;
by the formula

W={yeX:0yeX"} with [ylw =llyllx + ll0:yllx--
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We also consider the semi-norm || - ||y . This semi-norm is defined for any y € X,
| - ||% is continuous with respect to |- ||x and is compact with respect to | - ||w .

Let G be a semi-group generated by 9;, K C V be a closed convex set satisfying
the agreement condition with respect to G

Gs)KCK Vs>0 (1)

(see [1]). We consider the strong evolutionary variational inequality

G, € —y) +[AW), € —vl+ 2 (f,{—y) VEEK, (2)
where K = {( € X : {(t) € Ka.e.,{s=0 = (°},

¢° € K is an initial function.

By virtue of Theorem 2.9.1 [1], the condition (1) is equivalent to the following one: for
any y € K there exists sequence WNK > (; — y in X such that lim (8:(;,(i—y) <0.
11— 00

Note that in form (2) we require the additional smoothness: 8;y € X*. We can omit
this restriction if we consider the weak variational inequality

(06,6 —y) +[A(W),E-v]+ 2 (f,é-y) VYEEKNW. (3)

DEFINITION 1. A mapping A : X — Conv(X™) is said to be generalized pseudomono-
tone if for arbitrary {(yn,wn)} C graph(A) such that y, —y weakly in X, w, - w
weakly in X* and li_’ngo(wn,yn —y) <0, wehave we€ A(y) and (wn,yn) = (w,y).

DEFINITION 2. A mapping A : X — Conv(X*) is said to be monotone if for any
{(yn,wn)} C graph(A) (n = 1,2) we have that (w; — wa,y1 — y2) > 0. A mono-
tone mapping is mazimal monotone if its graph is not subset of some other monotone
operator’s graph.

DEFINITION 3. A: X — Conv(X™) is an operator of (X, W) —semibounded variation
if for any R > 0 and ||yi|lx < R (i = 1,2) there exists a continuous function C :
R, xRy — R, such that

[A(y1), y1 — y2]- > [A(y2), 91 — 92+ — C(B; llyr — v2llw)s (4)
7" C(R;7h) = 0 as 7 — +0 for arbitrary h,R> 0, |- |} is a compact semi-norm
with respect to || - ||w and is continuous with respect to || - ||x -

DEFINITION 4. A mapping A : X — Conv(X*) is said to be radially semicontinuous

if Lm [A(yo + 7€), h]+ = [A(y0),h]- for any yo, {, h € X. A mapping is demi-
T—=+0

continuous if it is continuous from strong topology of X to weak topology of X*.
DEFINITION 5. A mapping A : X — Conv(X*) is said to be bounded (s—weakly
locally bounded) if an image of bounded set is bounded too (if for any y, — y weakly
in X there exists the subsequence {y,,} such that ||A(yn, )|+ < N). _
DEFINITION 6. A mapping A : X — Conv(X™) is said to be coercive on K if there
exist yo € K and c: Ry — R, such that

[A(¥),y — vol- = c(llyllx)lly — wollx, () =00 as y— o0. (5)
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DEFINITION 7. A mapping A : X — Conv(X*) is said to be — ¢ —coercive on K
if there exists yo € K and c:R; — Ry such that

[A(y),y — yo]- + ¢(¥) > c(llyllx)lly — vollx, ¢c(y) = 00 as v — co.

REMARK. This coercivity condition can be modified (see §4.4 [3]).

DEFINITION 8. A functional ¢ : X — R is said to be weakly lower semicontinuous if
Lm ¢(y.) > ¢(y) as y, =y weakly in X.
=00

THEOREM 1. Let X be a reflexive Banach space; A : X — Conv(X*) s—weakly
locally bounded and generalized pseudomonotone; K conver and closed. Assume that
the agreement condition (1) holds. Suppose also that K is bounded or A is coercive on
Knw.

Then variational inequality (3) has a nonempty weakly compact set of solutions. If
A is coercive, then any solution satisfies the following estimate

c(llyllx) < [IFllx~ + 10:vollx-, (6)

where c,yo are defined in (5).
Proof. We consider the additional inequality

B2 = G(R)um € — yn) + [A(Wn) E—wnle = (FE—wn)  VEEK. (1)

 We define B = h"}(J—G(h)) + A : X — Conv(X*). The map h~1(I — G(h)) is
linear, maximal monotone and bounded for any h > 0:

("I - G(h)p,0) 20 Vo @)

Hence B is s—weakly locally bounded and generalized pseudomonotone too. If K
is bounded (for a finite T the sets K and K are bounded simultaneously), then
variational inequality (7) is solvable (see Theorem 1 [4]) and the solution set {yn} C K
is bounded in X . If K is not bounded and A is coercive, we have

G(h)

B,y -0l = (L=E® g _y)y—y0) +144) 5~ wol- +
(1 - G()

(22O ) > (el - 1 ol )l - sl

This implies that B is coercive and (7) is solvable (see Theorem 2 [4]). Moreover, from
the last inequality we obtain

lFx=llvn — wollx = (f>yn — yo) > [Br(yn), ¥n — Yo]- >
> (c(uyhux) NI - G x-) TR
- e(llunllx) < Iflx- + 1R~ = G(R))wollx-- (9)
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Hence the solutions set {ya} is bounded in X . Thus for any h > 0 there exists
wp, € A(yn) such that

(AT = G(R))yn, € — yn) + (wh, E —yn) > (f,E—yn) VEEK. (10)

Since A is s-weakly locally bounded, we can consider the weakly convergent subse-
quences which we denote by the same symbols:

yn —y weakly in X, wp, — x  weakly in X*.

Using (10) and (8) for ¢ = £ — yp, , we have
(B~ (I = G(R)E, € — yn) + (wn, € —yn) > (f,E—yn) VEEK. (11)
Substituting £ € K N'W in (11), we get
Lim (wp, yn — y) < lim (k™I = G(R))€, € — yn) + Lim (wh, §) -
. ;{1_1}1})<f’§_ yh) == (atgaf = y} T (Xa&) R (f=§ = y)

But for any y € K there exists {y;} C K NW such that lim (8;y;, ¥ —y) < 0 (see
1=—00
the agreement condition (1)). It follows that

(B, (X = f 48,6~ ) < Dim (x — f + Oeys, y: — ) < 0.

Consequently ﬁ(wh, yr — y) < 0. For generalized pseudomonotone operator A this
-+
means that x € A(y) and (wa,yn) = (X, y). Thus,

(Ol +x:6-y) 2(f,€—-y) VEEKNW.

Moreover, from last result and from estimate (9) we obtain that (6) is true.

It remains to prove that the solution set is weakly compact. Let y, € K be solutions
of (3), yn — y weakly in X . Then there exists ; such that (WNK)>(; -y in X
and Tim (9:Ci, i —y) < 0 (see (1)). Hence,

(0:6,€ — yn) + [A(n), € — Ynl+ = (Bl + Xn, E — ¥n) > (f,€—yn) VEEKNW.

For s-weakly locally bounded mapping A there exists the subsequences x, — x which
converges weakly in X™* . Thus,

nling‘:’(Xn;yn —y) < nli}nc}o }Jclg(x'myn -G) <

< Iim Bm({f — 8:Gi,yn — G) =

i—o00 {{;}
= ?_n;(BtCe, Gi—y) < lim (3G, G —y) < 0.
CS 1—o0
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By assumption, the operator A is generalized pseudomonotone. This proves that
{xn,yn) = (x,¥) and y is a solution of variational inequality (3). W

Let us define the additional condition of regularity

for any € > 0 and some g € X* the following inclusion is solvable

1
O1ye + A(ye) + gj(ys —iy) 3.9 Yejt=0 = CO’ Ye € K, (12)
where J(y) = {w € X*: (w,y) = |ly|k = llwli}-}-

THEOREM 2. Let X be a reflezive Banach space; A : X — Conv(X*) radially
semicontinuous operator of (X, W) —semibounded variation; K convezr and closed; the
agreement condition (1) holds; K = {¢ € X : {(t) € Ka.e.,{jt=0 = ¢°} . Moreover, A
and K satisfy one of the following conditions: K is bounded or A is coercive on K .
And let y be a solution of (8) which satisfies the additional condition of regularity (12).
Then y is a solution of (2).

Proof. Let y be a solution of (3), and for any € > 0 there exists y. € K which
satisfies (12). Since A is operator of (X, W)-semibounded variation, then

(Otye — frye —y) + [A(ys)’ Ye — y]— = (Otye — f1ye — ¥)+
it [A(ye)a Y=g [A(y), Ye — y]++
+[A®®), ve — yl+ 2 —C(R; llye — yliw)-

On the other hand, y. satisfies the inclusion (12)

(Oeye — frye — ) + [A(ye)aye - y]— g = 6_1J(ys e y) ~ Fi¥e = y) =
=(9-frye —y) — e lye — vl

Thus e Yy — yll% < C(R;llye — yllw) + lg — Flix=llye — vlix,

e lve — yllx < llve — vllX"C(R; llve — vllw) + llg — Fllx-. (13)

If A is coercive then

[A(We), Ye — Yol- + € NI (We = 1), ¥e — ¥0) = c|lvellx)llve — vollx+
+ e (llye = yll% = lve — ylixllyo — yllx) = 00 as|lyel|x — oo

Hence the solution set {y.} is bounded in X and in topology which is indicated by
|- |I% (it is continuous with respect to topology of X ). If K is bounded this estimate
is trivial. Using (13) and continuity of function C, we get e ||y.—yllx < Ci1 < o0. It
follows that ||ye —y||lx < eCi — 0 as € = 0. For s-weakly locally bounded operator A
there exists the subsequence {y.,} C {y.} such that {A(y.,)} are bounded in totality,
ie. we, € A(ye,) (such that 8;Yen +Wen +€,'J(Yen —y) = g ) are bounded in totality
too. Thus,

10¢ye + wellx < llgllx- + E_IHye - yllx- (14)_
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From (14) {0:ye,} are bounded too. We can choose the subsequence {y.,} such that
Ye, — ¢ weakly in W . The weak limit is unique. Hence (=y. B

COROLLARY 1. Let X be a reflerive Banach space; A: X — Conv(X*) be mazimal
monotone. Let also K be conver and closed; the agreement condition (1) holds. Assume
also that K is bounded or A is coercive on KNW .

Then variational inequality (2) has a nonempty weakly compact set of solutions. If A
is coercive on K N W, then any solution satisfies estimate (6) where c,yo are defined

in (5).

Proof. A maximal monotone operator is radially serhicontinuous, s-weakly locally
bounded, generalized pseudomonotone and monotone (see [4,6,7]). A monotone operator
is a mapping of (X, W)-semibounded variation. By Theorem 2.1 [5], the condition of
regularity (12) holds. Thus the conditions of Theorems 1 and 2 hold too. W

COROLLARY 2. Let X be a reflexive Banach space; A : X — X* be s—weakly
locally bounded and generalized pseudomonotone, ¢ : X — R be convez, weakly lower
semicontinuous and strong; K be conver and closed; the agreement condition (1) holds.
Assume also that K is bounded or A is ¢ —coercive on KNW .

Then variational inequality

(06,6 —y) +(A(y),E—v) +0(€) —o(y) > (f,€—y) VéeK

has a nonempty weakly compact set of solutions.
If, additionally, A is a mapping of (X, W) —semibounded variation and the condition
of regularity (12) holds, then

Oy, E—9) + (AW, E— )+ (&) —o(y) > (f.E—y) VEEK

has a nonempty weakly compact set of solutions.

Proof. The subdifferential d¢ : X — Conv(X*) is maximal monotone. Thus we can
use Theorems 1 and 2 for variational inequality with operator A+ d¢. R

EXAMPLE. Let Q@ C R" be a bounded domain with regular boundary 8Q, Q =
[0,T] x 2. We consider problems in Sobolev space X = {y € L,(0,T; WI(Q))}
where p € [2,00). Here L,(Q) = Ly(0,T; Ly()). We denote 1/g+1/p=1. Then
W= {y € L,(0,T; W,;(Q)) : 8y € Lo(0, T; W;1(Q))} .

The vanatlona.l mequahty with convex, weakly lower semicontinuous, strong func-
tional ¢ : L,(0, T; W} (2)) - R has the form

[&yg yd:cdt+Zf

+ 0lf) - o) 2 [Q fe-y)dedt V€K,  (15)
K ={¢ € Ly(0,T; W,,I(Q)) : Qt=0 = 0, (jzean = 0}.

2 9y a(¢ -

y)
3o oa, i+

Oz,
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Here we have variational inequality (2) with operator A = A; + A3, where

Ai(y) = Zaz, (

i=1

p—2 ay
332,'

dy
3:125

) , A1 : Ly(0, T; WE(Q)) = L0, T; W (),

and subdifferential Ay = 8¢ : L, (0, T; W3 (R2)) — Conv(Lg(0, T; W ($2))) are maxi-
mal monotone (see [7]). Thus (15) is solvable.
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